Search Results/Filters    

Filters

Year

Banks




Expert Group











Full-Text


Issue Info: 
  • Year: 

    2021
  • Volume: 

    51
  • Issue: 

    4
  • Pages: 

    443-454
Measures: 
  • Citations: 

    0
  • Views: 

    197
  • Downloads: 

    37
Abstract: 

Multi-label classification aims at assigning more than one label to each instance. Many real-world multi-label classification tasks are high dimensional, leading to reduced performance of traditional classifiers. Feature selection is a common approach to tackle this issue by choosing prominent features. Multi-label feature selection is an NP-hard approach, and so far, some swarm intelligence-based strategies and have been proposed to find a near optimal solution within a reasonable time. In this paper, a hybrid intelligence algorithm based on the binary algorithm of particle swarm optimization and a novel Local search strategy has been proposed to select a set of prominent features. To this aim, features are divided into two categories based on the extension rate and the relationship between the output and the Local search strategy to increase the convergence speed. The first group features have more similarity to class and less similarity to other features, and the second is redundant and less relevant features. Accordingly, a Local operator is added to the particle swarm optimization algorithm to reduce redundant features and keep relevant ones among each solution. The aim of this operator leads to enhance the convergence speed of the proposed algorithm compared to other algorithms presented in this field. Evaluation of the proposed solution and the proposed statistical test shows that the proposed approach improves different classification criteria of multi-label classification and outperforms other methods in most cases. Also in cases where achieving higher accuracy is more important than time, it is more appropriate to use this method.

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 197

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 37 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Author(s): 

MORTAZAVI REZA | JALILI SAEED

Issue Info: 
  • Year: 

    2015
  • Volume: 

    7
  • Issue: 

    1
  • Pages: 

    0-0
Measures: 
  • Citations: 

    0
  • Views: 

    452
  • Downloads: 

    187
Abstract: 

In this paper, we propose an effective microaggregation algorithm to produce a more useful protected data for publishing. Microaggregation is mapped to a clustering problem with known minimum and maximum group size constraints. In this scheme, the goal is to cluster n records into groups of at least k and at most 2k-1 records, such that the sum of the within-group squared error (SSE) is minimized. We propose a Local search algorithm which iteratively satisfies the constraints of the optimal solution of the problem. The algorithm solves the problem in O (n2) time. Experimental results on real and synthetic data sets with different distributions demonstrate the effectiveness of the method in producing useful protected data sets.

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 452

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 187 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Author(s): 

MAHDI S.

Issue Info: 
  • Year: 

    2003
  • Volume: 

    12
  • Issue: 

    2
  • Pages: 

    235-270
Measures: 
  • Citations: 

    1
  • Views: 

    142
  • Downloads: 

    0
Keywords: 
Abstract: 

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 142

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 1 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Author(s): 

LEE Y. | NA S.H.

Journal: 

INFORMATION RETRIEVAL

Issue Info: 
  • Year: 

    2012
  • Volume: 

    15
  • Issue: 

    2
  • Pages: 

    157-177
Measures: 
  • Citations: 

    1
  • Views: 

    121
  • Downloads: 

    0
Keywords: 
Abstract: 

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 121

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 1 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Issue Info: 
  • Year: 

    2015
  • Volume: 

    13
  • Issue: 

    1
  • Pages: 

    63-69
Measures: 
  • Citations: 

    0
  • Views: 

    877
  • Downloads: 

    0
Abstract: 

One of the problems with traditional genetic algorithms is its premature convergence that makes them incapable of searching good solutions of the problem. A memetic algorithm (MA) which is an extension of the traditional genetic algorithm uses a Local search method to either accelerate the discovery of good solutions, for which evolution alone would take too long to discover, or to reach solutions that would otherwise be unreachable by evolution or a Local search method alone. In this paper, a memetic algorithm based on learning automata (LA) and memetic algorithm, called LA-MA, is introduced. This algorithm is composed of two parts, genetic section and memetic section. Evolution is performed in genetic section and Local search is performed in memetic section. The basic idea of LA-MA is to use learning automata during the process of searching for solutions in order to create a balance between exploration performed by evolution and exploitation performed by Local search. To evaluate the efficiency of LA-MA, it has been used to solve two optimization problems: OneMax and graph isomorphism problems. The results of computer experimentations have shown that different versions of LA-MA outperform the others in terms of quality of solution and rate of convergence.

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 877

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Author(s): 

SCHAERF A.

Issue Info: 
  • Year: 

    2002
  • Volume: 

    20
  • Issue: 

    3
  • Pages: 

    177-190
Measures: 
  • Citations: 

    1
  • Views: 

    139
  • Downloads: 

    0
Keywords: 
Abstract: 

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 139

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 1 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Author(s): 

WILLIAMS A.M. | ELLIOTT D.

Issue Info: 
  • Year: 

    1999
  • Volume: 

    21
  • Issue: 

    4
  • Pages: 

    362-375
Measures: 
  • Citations: 

    1
  • Views: 

    237
  • Downloads: 

    0
Keywords: 
Abstract: 

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 237

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 1 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Issue Info: 
  • Year: 

    2009
  • Volume: 

    15
  • Issue: 

    1 (51)
  • Pages: 

    99-120
Measures: 
  • Citations: 

    1
  • Views: 

    1529
  • Downloads: 

    0
Abstract: 

This paper considers innovation search strategy as problem-solving activities by firms that involve the screening, creation and re-use of ideas, modification, and intelligent rejection of new and old know-how. Its aim is to investigate existing innovation search strategies of Iranian industrial firms and analyze the affecting factors on decision of firms to select scientific institutions in particular universities to acquisition of new economic knowledge on a theoretical framework based. In our empirical study of 39 Iranian industrial firms based on a survey performed by IROST, found that there are weak linkage between firms and scientific institutions. The results suggest that firms with higher basic research capabilities have likely better linkage with the scientific institutions.

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 1529

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 1 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 14
Issue Info: 
  • Year: 

    2019
  • Volume: 

    7
  • Issue: 

    4
  • Pages: 

    431-432
Measures: 
  • Citations: 

    0
  • Views: 

    185
  • Downloads: 

    77
Keywords: 
Abstract: 

Dear Editor, We appreciate the interest of the authors in our article entitled “ A productive proposed search syntax for health disaster preparedness research” . They have rightly emphasized on the standard reporting of systematic reviews. However, as it is clear from the title and objective of the published article, we did not report results of a systematic review, our article instead aimed to present a syntax validation process which guide with creating a proper search strategy for systematic reviews on disaster preparedness [1-4]....

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 185

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 77 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 4
Journal: 

Issue Info: 
  • End Date: 

    آبان 1386
Measures: 
  • Citations: 

    24
  • Views: 

    211
  • Downloads: 

    0
Keywords: 
Abstract: 

-موتور جستجو یا جویشگر یا جستجوگر به طور عمومی به برنامه گفته می شود که کلمات کلیدی را در یک سند یا بانک اطلاعاتی جستجو می کند. این مفهوم در اینترنت به برنامه هایی گفته می شود که کلمات کلیدی موجود در فایل ها و سند های وب جهانی، گروه های خبری و آرشیو های FTP را جستجو می کند و کاربران از آن برای جستجوی وب سایت ها و به دست آوردن اطلاعات مورد نیاز و یا مورد علاقه شان استفاده می کنند. برخی از موتور های جستجو برای تنها یک وب گاه (پایگاه وب) اینترنت به کار برده می شوند و در اصل موتور جستجوی اختصاصی برای آن وب گاه هستند که تنها محتویات همان وب گاه را جستجو می کنند و جستجو های مربوط به همان وب گاه را برای کاربران جواب می دهند. برخی دیگر از موتور های جستجو با استفاده از SPIDER ها محتویات وب گاه های زیادی را پیمایش کرده و چکید ه ای از آن را در یک پایگاه اطلاعاتی به شکل شاخص گذاری شده نگهداری می کنند. به این ترتیب کاربران می توانند با جستجو کردن در این پایگاه داده به پایگاه وبی که اطلاعات موردنظر آن ها را در خود دارد دسترسی داشته باشند. امروزه به موتور های جستجوگری نیاز است که اطلاعات را با سرعت و دقت بالا ارائه کنند برای جستجوی بزرگ که کل اینترنت را شامل می شود سایت های مطرح و مناسبی در اختیار است از جمله google, yahoo و سایر سایت ها. اما مشکل اصلی در ارائه امکانات جستجو برای سایت و پایگاه های خبری خاص می باشد که هدف ارائه امکاناتی می باشد تا کاربران بتوانند در بین تمامی اطلاعات و آرشیو های سایت و پورتال های خبری آن سازمان به برای دستیابی به اطلاعات مورد نظرشان جستجو کنند. حضور شرکت ها و سازمان های بزرگ فعال در این عرصه نیز می تواند تاکیدی بر اهمیت این موضوع باشد. در این پروژه نحوه کارکرد و ساختار کلی موتور های جستجوگر وب بررسی گردید و نرم افزار مربوطه به عنوان یک نرم افزار کارآمد برای سازوکار جستجو در سازمان های بزرگ ارائه گردید.

Yearly Impact:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 211

litScript
telegram sharing button
whatsapp sharing button
linkedin sharing button
twitter sharing button
email sharing button
email sharing button
email sharing button
sharethis sharing button